Essa lógica descritiva é essencial para o sucesso de projetos de IA que utilizam linguagem. Um chatbot mal planejado, por exemplo, pode responder de forma inadequada a uma reclamação ou interpretar mal uma pergunta, comprometendo a experiência do usuário. Assim, o profissional de PLN deve desenvolver uma sensibilidade interpretativa, combinando pensamento lógico com compreensão linguística. A atividade a seguir propõe exatamente esse exercício, em três etapas conectadas: identificar intenções, prever erros de interpretação e propor soluções lógicas.
Coloque-se no papel de um analista de PLN responsável por projetar a lógica de funcionamento de um chatbot para uma empresa de turismo. Seu trabalho não é programar, mas pensar na estrutura linguística e lógica do sistema. Responda às seguintes perguntas, que se complementam entre si:
- a) Quais seriam três intenções principais que o chatbot deveria reconhecer em mensagens de clientes interessados em pacotes de viagem? Justifique por que essas intenções são prioritárias.
- b) Com base nessas intenções, quais tipos de erros de interpretação seriam mais comuns em um sistema de PLN? Dê exemplos descritivos.
- c) Que estratégias lógicas (sem usar programação) você proporia para evitar ou reduzir esses erros e tornar o chatbot mais eficiente?
Nossa equipe é composta por profissionais especializados em diversas áreas, o que nos permite oferecer uma assessoria completa na elaboração de uma ampla variedade de atividades. Estamos empenhados em garantir a autenticidade e originalidade de todos os trabalhos que realizamos.
Ficaríamos muito satisfeitos em poder ajudar você. Entre em contato conosco para solicitar o seu serviço.